Всероссийская олимпиада школьников. Муниципальный этап 2024/25 уч.г. Математика, 8 класс, решения

Время выполнения 235 мин. Максимальное кол-во баллов – 35

Все задания по 7 баллов

Критерии оценивания заданий

Баллы	Правильность (ошибочность) решения					
7	Полное (верное) решение.					
6-7	Верное решение. Имеются небольшие недочеты, в целом не влияющие на ре-					
	шение.					
5-6	Решение в целом верное. Однако не рассмотрены отдельные случаи, либо ре-					
	шение содержит ряд ошибок, но может стать правильным после небольших ис-					
	правлений или дополнений.					
4	Верно рассмотрен один из двух (более сложный) существенных случаев, или в					
	задаче типа «оценка+пример» верно получена оценка.					
2-3	Доказаны вспомогательные утверждения, помогающие в решении задачи, или в					
	задаче типа «оценка+пример» верно построен пример.					
1	Рассмотрены отдельные важные случаи при отсутствии решения (или при					
	ошибочном решении).					
0	Решение неверное, продвижения отсутствуют.					
0	Решение отсутствует.					

*Указания к оцениванию задач содержатся также в комментариях к решениям

8.1. Лиза купила новый шампунь. Флакон старого шампуня стоил 200 рублей, а новый стоит на 20% дороже. Но зато флакона хватает на срок в полтора раза дольше. Сколько денег сэкономит Лиза к моменту, когда полностью использует два флакона нового шампуня?

Ответ. 120 рублей.

Решение. Два флакона нового шампуня стоят 480 рублей. Их хватает на тот же срок, что и трёх флаконов старого шампуня, за которые Лиза заплатила бы 600 рублей. Сэкономлено 120 рублей.

Комментарий. Любое полное решение задачи — 7 баллов. За арифметическую ошибку снимается 3 балла. Приведён только ответ — 0 баллов. Задача не решена или решена неверно — 0 баллов.

8.2. Из квадрата, сторона которого является целым числом, вырезали несколько непересекающихся квадратиков размером $1 \times 1.$ Оказалось, что из вырезанных квадратиков можно составить квадрат. Площадь оставшейся части большого квадрата равна 119. Чему может равняться сторона квадрата, составленного из вырезанных квадратиков?

Ответ. 5 или 59.

Решение. Обозначим стороны квадратов a и b. Тогда $a^2-b^2=119$, (a-b)(a+b)=119. Число 119 раскладывается в произведение множителей двумя способами: $119=1\cdot 119$, $119=7\cdot 17$. Получаем две системы $\begin{cases} a-b=1,\\ a+b=119 \end{cases}$ и $\begin{cases} a-b=7,\\ a+b=17. \end{cases}$ В первом случае a=60,b=59. Во втором случае a=12,b=5.

Комментарий. Верное обоснованное решение — 7 баллов. Следующие критерии суммируются. Составлено уравнение $a^2 - b^2 = 119 - 1$ балл; приведено к виду (a - b)(a + b) = 119 - 1 балл; число 119 разложено на множители — 1 балл; получены две системы — 2 балла, системы верно решены — 2 балла. Если оба ответа найдены подбором, и не доказано, что других ответов нет — 2 балла. Если подбором найден только один ответ — 1 балл.

8.3. Число 3576 представлено в виде суммы двух положительных целых слагаемых, которые можно сложить без переноса цифр в следующий разряд. Каким числом способов это можно сделать? Пары слагаемых (a, b) и (b, a) при $a \neq b$ считаются отдельно.

Ответ. 1344.

Решение. Число, соответствующее каждой цифре, должно раскладываться в сумму двух слагаемых. Число 3 можно разложить 4 способами (0+3, 1+2, 2+1, 3+0). Число 5-6 способами, число 7 — 8 способами, число 6 — 7 способами. Всего способов $4 \cdot 6 \cdot 8 \cdot 7 = 1344$.

Комментарий. Полное обоснованное решение – 7 баллов. Верная идея решения, но допущены ошибки при подсчётах числа способов – снимается 1 балл за одну ошибку, 3 балла за две ошибки, 5 баллов за большее число ошибок. Решение начато, есть некоторое продвижение – 1-2 балла. Приведён только ответ – 0 баллов.

8.4. В треугольнике ABC угол $BAC = 45^{\circ}$, сторона AB = 12. На стороне AB взята точка D так, что AD = 4, $\angle BDC = 60^{\circ}$. Найдите $\angle CBD$.

Ответ. 75°.

Решение. Опустим из точки B перпендикуляр BK на отрезок CD, и проведём отрезок AK. Угол $DBK = 30^{\circ}$, поэтому катет $KD = \frac{BD}{2} = 4$, откуда треугольник AKD — равнобедренный, AD = DK. Поскольку $\angle ADK = 180^{\circ} - 60^{\circ} = 120^{\circ}$, $\angle AKD = \angle KAD = 30^{\circ}$. Тогда $\angle KAC = 45^{\circ} - 30^{\circ} = 15^{\circ}$ и $\angle AKC = 180^{\circ} - 30^{\circ} = 150^{\circ}$, $\angle ACK = 180^{\circ} - 150^{\circ} - 15^{\circ} = 15^{\circ}$. Поэтому треугольник AKC – равнобедренный, AK = CK. Но и треугольник AKB — равнобедренный, так как углы при основании AB равны 30° . Следовательно, AK = KB, и поэтому KB = CK. Треугольник CBK равнобедренный и прямоугольный, отсюда $\angle CBK = 45^{\circ}$, а $\angle CBD = 45^{\circ} + 30^{\circ} = 75^{\circ}$.

Комментарий. Любое полное решение задачи – 7 баллов. Приведено верное в целом рассуждение, содержащее незначительные пробелы или неточности – до 6 баллов. Если решение не доведено до конца, за доказательство полезных вспомогательных утверждений -1-2 балла.

- 8.5. На каждой стороне каждой из 6 карточек записано по одному числу. Петя выкладывает все карточки в ряд (любой стороной вверх), потом складывает числа, которые он видит на первых трёх карточках слева, и вычитает из них сумму чисел, которые он видит на оставшихся трёх карточках справа.
- а) Какое наименьшее число он может получить, если пары чисел на карточках таковы: (18; 17), (4; 12), (8; 11), (1; 17), (19; 5), (7; 14)?
- б) Укажите и обоснуйте алгоритм, позволяющий решить такую задачу для любых чисел на 2n карточ-

Ответ. а) -38; б) $a_1+a_2+\cdots+a_n-b_{n+1}-b_{n+2}-\cdots-b_{2n}$, где карточки $(a_i;\ b_i)$ упорядочены по неубыванию среднего арифметического a_i , b_i и $a_i \leq b_i$.

Решение. б) Запишем числа (a, b) на карточках в порядке возрастания $(a \le b)$. Легко видеть, что для сложения надо использовать меньшие числа (a), для вычитания – большие числа (b). Упорядочим карточки по возрастанию (неубыванию) среднего арифметического $\frac{a+b}{2}$. Ответом будет являться число $a_1+a_2+\cdots+a_n-b_{n+1}-b_{n+2}-\cdots-b_{2n}$.

$$a_1 + a_2 + \dots + a_n - b_{n+1} - b_{n+2} - \dots - b_{2n}$$

Обоснование. При замене любого из чисел a_i ($i \le n$) на a_k (k > n) сумма изменится на

$$a_k - a_i + b_k - b_i = (a_k + b_k) - (a_i + b_i) \ge 0.$$

а) Следуя алгоритму, получаем

(a; b)	(4; 12)	(1; 17)	(8; 11)	(7; 14)	(5; 19)	(17; 18)
$\frac{a+b}{2}$	8	9	9,5	10,5	12	17,5

$$4+1+8-14-19-18=-38$$
.

Комментарий. Полное обоснованное решение -7 баллов. a) Найден верный ответ -1 балл, ответ обоснован -1 балл. б) Указан верный алгоритм -3 балла, алгоритм обоснован -2 балла; баллы суммируются. Если обоснование ответа в пункте а) допускает обобщение (но оно не сделано), то баллы за эту часть повышаются на 1 балл.