ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ МУНИЦИПАЛЬНЫЙ ЭТАП 2024-2025 УЧЕБНЫЙ ГОД 8 КЛАСС

Максимальное время выполнения задания: 240 мин. Максимально возможное количество баллов: 130

Задача 1. Неизвестный оксид

Вещество \mathbf{X} — оксид металла (массовая доля кислорода 23,88 %), название которого связано с именем скандинавской богини любви и красоты Фрейи. \mathbf{X} образует серые кристаллы, не растворимые в воде, имеющие структуру типа NaCl (рисунок). Его элементарная ячейка - куб стороной 4,093 Å.

- -CI⁻ -Na⁻
- 1. Определите вещество \mathbf{X} , подтвердив расчетом. Чему равна его молярная масса?
- 3. Какие еще оксиды металла, который входит в состав **X**, вам известны? **Для справки**: $1 \text{ Å} = 10^{-8} \text{ см}$; $1 \text{ a.e.m} = 1,66 \cdot 10^{-24} \text{ г}$

(13 баллов)

Задача 2. Токсичное вещество

Вещество $\bf A$ - тёмно-красная токсичная жидкость с резким запахом, которая используется в производстве пестицидов. $\bf A$ может быть получено при взаимодействии расплава светло-жёлтого порошкообразного неметалла $\bf B$, который относится к халькогенам, с желто-зелёным газом-галогеном $\bf C$ (реакция 1).

- 1. Установите химическую формулу вещества А подтвердив расчетом, если В и С реагируют друг с другом в соотношении 1:1.
- 2. **А** легко гидролизуется и даже «дымит» во влажной атмосфере с образованием газа **D** с резким неприятным запахом, в котором массовая доля кислорода равна 50 %, **B** и одноосновной кислоты (реакция 2). Определите массу (в г) соединения **B**, образовавшегося при полном гидролизе 5 моль **A**.
- 3. Напишите уравнения упомянутых химических реакций.

(13 баллов)

Задача 3. Элемент Земли

Химический элемент \mathbf{X} по распространённости в земной коре занимает второе место после кислорода. Простое вещество \mathbf{Y} , образованное элементом \mathbf{X} , было впервые получено в 1811 году французскими учёными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром, а в 1823 году Йёнс Якоб Берцелиус получил \mathbf{Y} путём восстановления фторида элемента \mathbf{X} , в котором $\omega(F)=73,08$ масс. %, металлическим калием (*реакция 1*). \mathbf{Y} также может быть получен при прокаливании кислотного оксида \mathbf{Z} , содержащего 53,3 % кислорода по массе, с магнием (*реакция 2*). \mathbf{Z} реагирует с газообразным фтороводородом (*реакция 3*) с образованием фторида элемента \mathbf{X} и воды, а также с водным раствором

гидроксида калия (peakuus 4). При взаимодействии **Y** с **Z** при температуре свыше 1200 °C образуется оксид, в котором **X** проявляет степень окисления +2 (peakuus 5).

- 1. Определите элемент X, простое вещество Y. Установите химическую формулу Z, подтвердив расчетом
- 2. Напишите уравнения всех упомянутых химических реакций

(24 балла)

Задача 4. Истина или ложь?

Оцените правдивость представленных ниже высказываний:

- 1. КО₂ это оксид калия
- 2. O_3 и O_2 изотопы
- 3. Электрон тяжелее протона примерно в 1840 раз
- 4. Литий не реагирует с водой
- 5. Малахит это простое вещество
- 6. Оксиды это бинарное соединение химического элемента с кислородом в степени окисления –2
- 7. Фтор является самым химически активным металлом и сильнейшим восстановителем
- 8. Соли плавиковой кислоты фториды
- 9. Степень окисления кислорода в соединении O_2F_2 равна +1
- 10. Каждый кислотный оксид вступает в реакцию с водой
- $11.P_2O_5$ кислотный оксид
- 12. Концентрированные HNO_3 и H_2SO_4 кислоты-восстановители
- 13.Cu + H_2 SO₄ (разб.) ≠
- 14. Рубидий крайне неустойчив на воздухе, реагирует с воздухом в присутствии следов воды с воспламенением
- 15.В атоме не может быть двух электронов, у которых квантовые числа были бы одинаковы
- 16.В изолированной системе энергия может переходить из одной формы в другую, но ее общее количество остается постоянным
- 17.В превращениях: $I_2 + HNO_3 \rightarrow \mathbf{X} + NO_2 + H_2O$, $\mathbf{X} \rightarrow H_2O + I_2O_5$ \mathbf{X} это HIO_3
- 18. Соли калия, особенно хлориды и нитраты, окрашивают бесцветное пламя горелки в зеленый цвет.
- 19. Масса протона близка к массе нейтрона
- 20. Амфотерные оксиды могут реагировать с кислотами

(30 баллов)

Задача 5. Несущий свет

Как считается, фосфор был открыт в 1669 г. немецким алхимиком Хеннингом Брандом. С целью получения философского камня Бранд собрал в солдатских казармах несколько бочек мочи, которую в дальнейшем упарил и перегнал. В результате чего образовалось «красное масло» и остаток, содержащий белую соль. Соль он отбрасывал, а красное масло смешивал с углем и вновь нагревал эту смесь в течение 16 часов. В результате образовывался фосфор, который в виде белой пыли, медленно оседал на дно реторты и светился в темноте. Бранд, приняв получившееся вещество за философский камень, пытался превратить его в золото, но все его попытки ни к чему не привели. Тогда Бранд нашёл другой способ получить «золото». Поскольку фосфор вызвал огромный интерес, Бранд начал им активно торговать, выставляя цену дороже золота и сохраняя процесс получения фосфора в тайне.

Однако, способ Бранда был несовершенен и давал гораздо меньше фосфора, чем мог бы, потому что отброшенная им соль содержала большую часть фосфатов. Алхимик получил всего 120 г фосфора из 5 700 л мочи.

- 1. Сколько грамм фосфора мог бы получить Бранд, если бы он использовал весь остаток дистилляции? Учтите, что суточная порция (около 1,5 л) мочи взрослого человека содержит примерно 20 миллимоль фосфат-ионов.
- 2. Определите практический выход* фосфора в способе Бранда.
- 3. Где еще содержится фосфор в организме человека?
- 4. Как Вы думаете, почему Бранд назвал открытый им элемент фосфором?

*Понятие практический выход (η) используется для продуктов реакции и означает отклонение массы продукта от теоретически возможного:

 $\eta = m(\pi paktuчеckas)/m(\tau eopetuчeckas) \cdot 100 %$

(20 баллов)

Задача 6. Мысленный эксперимент

Способность вещества растворяться в воде называют растворимостью (S). Все твердые вещества лишь ограничено растворимы в воде. Их растворимость выражают числом, которое показывает наибольшую массу вещества, которая может раствориться в 100 г воды при определенной температуре.

1. К 150 г воды, имеющей температуру 10 °C, добавили 60 г КСІ. Вычислите массовую доли соли в растворе над осадком (изменением температуры воды в ходе растворения пренебрегите). Какую массу воды той же температуры надо взять, чтобы полностью растворить соль? Используйте представленную на рисунке 1 зависимость растворимости КСІ в воде от температуры.

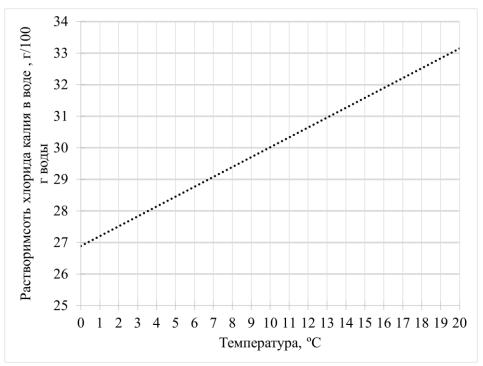


Рисунок 1 - Зависимость растворимости КСІ в воде от температуры

2. Используя справочные данные о растворимости $FeSO_4 \cdot 7H_2O$, рассчитайте объем воды и массу кристаллогидрата сульфата железа (II), необходимые для приготовления 40 г насыщенного при 50 °C раствора сульфата железа(II).

Соль	Растворимость (г/100 г воды)						
	10 °C	20 °C	30 °C	40 °C	50 °C	60 °C	80 °C
FeSO ₄ 7H ₂ O	20,5	26,5	32,9	40,2	48,6	55,3	43,7

3. Из 530 г 38% раствора сульфата железа (II) при охлаждении до температуры Т выпало 278 г его гептагидрата. Рассчитайте растворимость сульфата железа при температуре Т. Чему примерно равна температура Т?

(30 баллов)