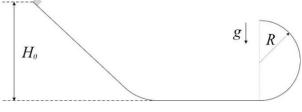

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ 2024/25 ГОД МУНИЦИПАЛЬНЫЙ ЭТАП 10 КЛАСС

Максимальное время выполнения заданий: <u>230 мин</u>. Каждая задача оценивается в 10 баллов.



Задача 1. Жёсткая трубка массой m=100 г, длиной L=30 см и площадью сечения S=10 см² прикреплена к крану с водой с помощью гибкого шланга (см. рис). На свободном конце трубка изогнута под прямым углом. На какой угол от вертикали отклонится трубка, если открыть кран? Плотность воды $\rho=1000$ кг/м³, скорость истечения воды считать постоянной и равной v=1 м/с. При каком максимальном значении скорости v_{max} трубка всё ещё сможет находиться в положении равновесия? Упругостью шланга пренебречь. Ускорение свободного падения принять равным g=10 м/с².

Задача 2. В изображённой на рисунке электрической схеме все резисторы имеют одинаковое сопротивление R. Найти сопротивление между выводами A и B.

Задача 3. С горки высотой H_0 без начальной скорости соскальзывает маленький грузик. Горка плавно переходит в горизонтальную плоскость, которая, в свою очередь, плавно переходит в поверхность, имеющую форму половины цилиндрической поверхности радиуса R (см. рис.). На какой высоте

от горизонтальной плоскости грузик оторвётся от «полуцилиндрической» поверхности? При $H_0 = 3R$ найти место приземления грузика (указать расстояние от места перехода горизонтальной плоскости в «полуцилиндрическую» поверхность). Вся траектория грузика лежит в одной плоскости параллельной плоскости рисунка. Трения нет.

Задача 4. КЮТовец Дима заказал в интернет-магазине «Дикие ежевички» очень точный спидометр с модулем ГЛОНАСС. Дима разобрался в инструкции, настроил прибор и решил с его помощью поставить эксперимент по нахождению коэффициента сопротивления игрушечного кораблика в воде. Он разместил спидометр внутри кораблика так, чтобы показания прибора можно было считать, смотря на кораблик сверху. Кораблик поместил в длинную прозрачную кювету, заполненную водой. Подложил под кювету лист миллиметровой бумаги и закрепил над кюветой камеру с возможностью высокоскоростной съёмки. Включив на камере запись, Дима толкнул кораблик. Затем, отобрав удачные кадры, на которых хорошо видно и показания спидометра, и перемещение кораблика относительно начального положения, Дима принялся за их обработку. В результате он получил зависимость показаний спидометра от смещения кораблика (см. таблицу). Помогите Диме определить коэффициент сопротивления игрушечного кораблика в воде. Массу кораблика принять равной m=100 г.

Примечание: скорость кораблика можно считать достаточной малой для того, чтобы выполнялось $\vec{F}_{\text{TD.}} = -\alpha \vec{v}$, где α – искомый коэффициент.

ΔХ, см	0	1	2	3	4	5	6	7	8	9	10
V, cm/c	10.6	10.3	0.1	9.4	8.3	7.6	8.2	7.0	7.0	6.8	6.2

Задача 5. Кубик из серебра нагрели так, что его объём увеличился на величину $\Delta V=3~{\rm cm}^3$. Найдите количество теплоты, подведенное к этому кубику, если его начальная температура $t_0=0~{\rm ^{\circ}C}$. Удельная теплоёмкость серебра $c=250~{\rm Дж/(кr\cdot ^{\circ}C)}$, плотность при $t_0=0~{\rm ^{\circ}C}$ составляет $\rho_0=10$,5 г/см 3 , а коэффициент линейного расширения $\alpha=2\cdot 10^{-5}~K^{-1}$.

При нагревании тела на ΔT увеличение его объёма равно $\Delta V = \beta V_0 \Delta T$, где β – коэффициент объёмного расширения тела. Считайте в рамках задачи увеличение размеров кубика малым по сравнению с его размерами при $t_0 = 0$ °C.

Подсказка: найдите как связаны между собой коэффициенты α и β .